Oxidant stress with hydrogen peroxide attenuates calcium paradox injury: role of protein kinase C and ATP-sensitive potassium channel.

نویسندگان

  • H Miyawaki
  • Y Wang
  • M Ashraf
چکیده

OBJECTIVE We tested the hypotheses that low concentration of H2O2 attenuates the Ca2+ paradox (Ca2+ PD) injury, and that activation of protein kinase C (PKC) and/or ATP-sensitive potassium channel (KATP) are involved in the protective effects of H2O2. METHODS Langendorff-perfused rat hearts were subjected to the Ca2+ PD (10 min of Ca2+ depletion followed by 10 min of Ca2+ repletion). Functional and biochemical effects of H2O2 and other interventions on the cell injury induced by the Ca2+ PD were assessed. RESULTS In the Ca2+ PD hearts pretreated with 20 mumol/l H2O2, left ventricular end-diastolic pressure and coronary flow were significantly preserved. Furthermore, peak lactate dehydrogenase release was significantly decreased and ATP contents were more preserved, compared with non-treated Ca2+ PD hearts. H2O2-treated hearts also showed remarkable preservation of cell structure. Addition of a specific PKC inhibitor, chelerythrine during H2O2 treatment completely abolished the beneficial effects of H2O2 on the Ca2+ PD. Similarly, an activator of PKC. Phorbol 12-myristate 13 acetate mimicked the protection by H2O2. Furthermore, pretreatment with a KATP opener, cromakalim also provided protection similar to H2O2 against the Ca2+ PD injury. However, a specific KATP inhibitor, glibenclamide was not able to completely block the effects of H2O2. CONCLUSIONS These findings suggest that pretreatment with low concentration of H2O2 provides significant protection against the lethal injury of Ca2+ PD in rat hearts. PKC-mediated signaling pathways appear to play a crucial role in the protection against the Ca2+ PD injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion.

Cardiomyocyte death after ischemia/reperfusion correlates with oxidant stress, and antioxidants confer protection in that model. Preconditioning (PC) with hypoxia or adenosine also confers protection, leading us to hypothesize that PC protects by attenuating oxidant generation during subsequent ischemia/reperfusion. Chick cardiomyocytes were preconditioned with 10 minutes of hypoxia or adenosin...

متن کامل

Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes.

3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) can exert beneficial effects independently of serum cholesterol reduction by increasing the bioavailability of nitric oxide. However, it is unclear whether statins can exert such effects directly on cardiac myocytes and whether mitochondria are potential targets. Neonatal rat cardiac myocytes were cultured and subjec...

متن کامل

CaM Kinase II-dependent pathophysiological signalling in endothelial cells.

Calcium/calmodulin-dependent protein kinase II (CaM Kinase II) is a known modulator of cardiac pathophysiology. The present review uniquely focuses on novel CaM Kinase II-mediated endothelial cell signalling which, under pathophysiological conditions, may indirectly modulate cardiac functions via alterations in endothelial or endocardial responses. CaM Kinase II has four different isoforms and ...

متن کامل

Hydrogen sulfide and endothelium-dependent vasorelaxation.

In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S), synthesized enzymatically from l-cysteine or l-homocysteine, is the third gasotransmitter in mammals. Endogenous H2S is involved in the regulation of many physiological processes, including vascular tone. Although initially it was suggested that in the vascular wall H2S is synthesized only by smooth muscle cells and relaxe...

متن کامل

Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium.

Growing evidence exists that ATP-sensitive mitochondrial potassium channels (MitoKATP channel) are a major contributor to the cardiac protection against ischemia. Given the importance of mitochondria in the cardiac cell, we tested whether the potent and specific opener of the MitoKATP channel diazoxide attenuates the lethal injury associated with Ca2+overload. The specific aims of this study we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 1998